Worth a Thousand Words

July 5, 2010 / no comments


As the saying goes, a picture is worth a thousand words. This is especially true when studying architectural lighting concepts. With energy codes becoming more and more stringent, and seeking sustainability through power reduction becoming more and more prevalent, it’s easy to lose sight of the fact that designing by numbers does not tell the entire story. Although meeting minimum illuminance levels is critical to safety and security, and although reducing electricity demand is critical, balancing brightness, uniformity, and contrast ratios with an understanding of texture and shadow is what really leads to a successful lighting composition.

This is not to say that energy codes and recommended illuminance levels are not important, but rather that they are only one piece of the puzzle – one that must be thoroughly understood, and achieved without sacrificing visual clarity in our designs.


A lighted nighttime environment rendered with 3D computer software can be an invaluable way to communicate a lighting concept and a hierarchy of surface brightness for a space. Seeing the ceiling uniformity and shadows created by structural members can impart important information back to the designers that could easily be missed when designing by numbers alone.


Uplighted coffers and the interplay of shadows on different architectural surfaces can be visualized when accurately modeled, allowing the perceived brightness of a room or building to directly inform the design. Material characteristics can be studied and determined, well before the design is finalized, allowing the designers instant feedback on their decisions.


The catch to all of this is that careful attention must be paid to material attributes and light fixture photometric distributions. Creating a wonderful picture that is not entirely accurate can be worth the wrong thousand words.

Material colors and reflectances must be matched as closely as possible to the intended specifications. Darker or lighter color selections, or polished material finishes rather than matte, can make the rendered image differ significantly from the built form. Photometric accuracy is equally critical. Without realistic light distributions and outputs, information contained within IES data files, the 3D model is nothing more than an artistic rendition.

The lighting designer’s responsibility is to integrate all of this critical information into one cohesive model when rendered images are required. It is the thorough understanding of fixture optics, material reflectances, brightness perception, and uniformity ratios that allow lighted environments to be accurately visualized and studied through computer simulation. The artful layering of light and dark goes far beyond minimum illumination achieved or amount of energy consumed, and sometimes, the picture is worth more than a thousand words.


Photo Credits: Visarc (1a), Nathanael C. Doak / Lam Partners (1b, 5b), Peter Aaron / Esto (3b), Lam Partners (all others)